42 research outputs found

    Establishing a distributed system for the simple representation and integration of diverse scientific assertions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information technology has the potential to increase the pace of scientific progress by helping researchers in formulating, publishing and finding information. There are numerous projects that employ ontologies and Semantic Web technologies towards this goal. However, the number of applications that have found widespread use among biomedical researchers is still surprisingly small. In this paper we present the aTag (‘associative tags’) convention, which aims to drastically lower the entry barriers to the biomedical Semantic Web. aTags are short snippets of HTML+RDFa with embedded RDF/OWL based on the Semantically Interlinked Online Communities (SIOC) vocabulary and domain ontologies and taxonomies, such as the Open Biomedical Ontologies and DBpedia. The structure of aTags is very simple: a short piece of human-readable text that is ‘tagged’ with relevant ontological entities. This paper describes our efforts for seeding the creation of a viable ecosystem of datasets, tools and services around aTags.</p> <p>Results</p> <p>Numerous biomedical datasets in aTag format and systems for the creation of aTags have been set-up and are described in this paper. Prototypes of some of these systems are accessible at <url>http://hcls.deri.org/atag</url></p> <p>Conclusions</p> <p>The aTags convention enables the rapid development of diverse, integrated datasets and semantically interoperable applications. More work needs to be done to study the practicability of this approach in different use-case scenarios, and to encourage uptake of the convention by other groups.</p

    Vantagens e limitações das ontologias formais na área biomédica

    Get PDF
    Propomos uma tipologia dos artefatos de representação para as áreas de saúde e ciências biológicas, e a associação dessa tipologia com diferentes tipos de ontologia formal e lógica, chegando a conclusões quanto aos pontos fortes e limitações da ontologia de diferentes tipos de recursos lógicos, enquanto mantemos o foco na lógica descritiva. Consideramos quatro tipos de representação de área: (i) representação léxico-semântica, (ii) representação de tipos de entidades, (iii) representação de conhecimento prévio, e (iv) representação de indivíduos. Defendemos uma clara distinção entre os quatro tipos de representação, de forma a oferecer uma base mais racional para o uso das ontologias e artefatos relacionados no avanço da integração de dados e interoperabilidade de sistemas de raciocínio associados. Destacamos que apenas uma pequena porção de fatos cientificamente relevantes em áreas como a biomedicina pode ser adequadamente representada por ontologias formais, quando estas últimas são concebidas como representações de tipos de entidades. Particularmente, a tentativa de codificar conhecimento padrão ou probabilístico pela utilização de ontologias assim concebidas é fadada à produção de modelos não intencionais e errôneos

    Towards an interoperable information infrastructure providing decision support for genomic medicine

    Full text link
    Genetic dispositions play a major role in individual disease risk and treatment response. Genomic medicine, in which medical decisions are refined by genetic information of particular patients, is becoming increasingly important. Here we describe our work and future visions around the creation of a distributed infrastructure for pharmacogenetic data and medical decision support, based on industry standards such as the Web Ontology Language (OWL) and the Arden Syntax

    ACGT: advancing clinico-genomic trials on cancer - four years of experience.

    Get PDF
    The challenges regarding seamless integration of distributed, heterogeneous and multilevel data arising in the context of contemporary, post-genomic clinical trials cannot be effectively addressed with current methodologies. An urgent need exists to access data in a uniform manner, to share information among different clinical and research centers, and to store data in secure repositories assuring the privacy of patients. Advancing Clinico-Genomic Trials (ACGT) was a European Commission funded Integrated Project that aimed at providing tools and methods to enhance the efficiency of clinical trials in the -omics era. The project, now completed after four years of work, involved the development of both a set of methodological approaches as well as tools and services and its testing in the context of real-world clinico-genomic scenarios. This paper describes the main experiences using the ACGT platform and its tools within one such scenario and highlights the very promising results obtained

    Analysis of the suitability of existing medical ontologies for building a scalable semantic interoperability solution supporting multi-site collaboration in oncology

    Get PDF
    Semantic interoperability is essential to facilitate efficient collaboration in heterogeneous multi-site healthcare environments. The deployment of a semantic interoperability solution has the potential to enable a wide range of informatics supported applications in clinical care and research both within as ingle healthcare organization and in a network of organizations. At the same time, building and deploying a semantic interoperability solution may require significant effort to carryout data transformation and to harmonize the semantics of the information in the different systems. Our approach to semantic interoperability leverages existing healthcare standards and ontologies, focusing first on specific clinical domains and key applications, and gradually expanding the solution when needed. An important objective of this work is to create a semantic link between clinical research and care environments to enable applications such as streamlining the execution of multi-centric clinical trials, including the identification of eligible patients for the trials. This paper presents an analysis of the suitability of several widely-used medical ontologies in the clinical domain: SNOMED-CT, LOINC, MedDRA, to capture the semantics of the clinical trial eligibility criteria, of the clinical trial data (e.g., Clinical Report Forms), and of the corresponding patient record data that would enable the automatic identification of eligible patients. Next to the coverage provided by the ontologies we evaluate and compare the sizes of the sets of relevant concepts and their relative frequency to estimate the cost of data transformation, of building the necessary semantic mappings, and of extending the solution to new domains. This analysis shows that our approach is both feasible and scalable

    Ontology Based Integration of Distributed and Heterogeneous Data Sources in ACGT.

    Full text link
    In this work, we describe the set of tools comprising the Data Access Infrastructure within Advancing Clinic-genomic Trials on Cancer (ACGT), a R&D Project funded in part by the European. This infrastructure aims at improving Post-genomic clinical trials by providing seamless access to integrated clinical, genetic, and image databases. A data access layer, based on OGSA-DAI, has been developed in order to cope with syntactic heterogeneities in databases. The semantic problems present in data sources with different nature are tackled by two core tools, namely the Semantic Mediator and the Master Ontology on Cancer. The ontology is used as a common framework for semantics, modeling the domain and acting as giving support to homogenization. SPARQL has been selected as query language for the Data Access Services and the Mediator. Two experiments have been carried out in order to test the suitability of the selected approach, integrating clinical and DICOM image databases

    Information Retrieval Systems Adapted to the Biomedical Domain

    Get PDF
    The terminology used in Biomedicine shows lexical peculiarities that have required the elaboration of terminological resources and information retrieval systems with specific functionalities. The main characteristics are the high rates of synonymy and homonymy, due to phenomena such as the proliferation of polysemic acronyms and their interaction with common language. Information retrieval systems in the biomedical domain use techniques oriented to the treatment of these lexical peculiarities. In this paper we review some of the techniques used in this domain, such as the application of Natural Language Processing (BioNLP), the incorporation of lexical-semantic resources, and the application of Named Entity Recognition (BioNER). Finally, we present the evaluation methods adopted to assess the suitability of these techniques for retrieving biomedical resources.Comment: 6 pages, 4 table
    corecore